УДК: 633.88:543.544

Илёс РУЗИЕВ,

РhD, доцент Самаркандского государственного университета им. Ш.Рашидова,

E-mail: ruziyev78@inbox.ru

Дилдора КИЛИЧЕВА,

магистр Самаркандского государственного университета им. Ш.Рашидова,

E-mail: E-mail:boburabdumajid@gmail.com

Абдукодир МУХАМАДИЕВ,

PhD, доцент Самаркандского государственного университета им. Ш.Рашидова,

E-mail: mqodir08@mail.ru

Зулхумор АБДУРАИМОВА,

бакалавр Самаркандского государственного университета им. Ш.Рашидова,

E-mail: E-mail:boburabdumajid@gmail.com

На основании отзыва доктора химических наук Абдурахманова Э.А, профессор Института биохимии СамГУ им. III.Рашидова

ОСОБЕННОСТИ ХРОМАТОГРАФИЧЕСКОГО УДЕРЖИВАНИЯ НЕКОТОРЫХ ФЛАВОНОИДОВ МЕТОДОМ ВЭЖХ

Аннотация

Исследовано хроматографическое удерживание некоторых производных флавоноидов в условиях обращено-фазового варианта ВЭЖХ. Определены факторы удерживания при различных составах элюента (CH_3OH , фосфатный буфер и H_2O). Исследовано взаимосвязь между строением, свойствами и хроматографическим удерживанием нек оторых флавоноидов.

Ключевые слова: флавоноиды, эллюент, ВЭЖХ, высокоэффективная жидкостная хроматография, фактор удерживания, поток элюента, зависимость удерживания от состава элюента.

BA'ZI FLAVONOIDLARNI YUSSX USUL BILAN XROMATOGRAFIK USHLANISHNING O'ZIGA XOS XUSUSIYATLARI

Annotasiya

Ba'zi flavonoid hosilalarining xromatografik ushlanishi murojaat fazali YuSSX sharoitida o'rganilgan. Turli xil eluent tarkiblari (CH₃OH, fosfat buferi) uchun ushlab ushlanish omillari aniqlangan. Ba'zi flavonoidlarning tuzilishi, xossalari va xromatografik ushlanishi o'rtasidagi bog'liqlik o'rganilgan.

Kalit so'zlar: flavonoidlar, elyuent, YuSSX, yuqori samarali suyuqlik xromatografiyasi, ushlanish omili, elyuent oqimi, ushlanishning elyuent tarkibiga bog'liqligi.

FEATURES OF CHROMATOGRAPHIC RETENTION OF SOME FLAVONOIDS BY HPLC METHOD

Annotation

The chromatographic retention of some flavonoid derivatives was studied under reverse-phase HPLC conditions. Retention factors were determined for different eluent compositions (CH₃OH, phosphate buffer). The relationship between the structure, properties and chromatographic retention of certain flavonoids has been studied.

Key words: flavonoids, eluent, HPLC, high-performance liquid chromatography, retention factor, eluent flow, dependence of retention on the composition of the eluent.

Введение. В современной аналитической химии широко применяется высокоэффективный метод — высокоэффективная жидкостная хроматография (ВЭЖХ), представляющая собой специальное применение при анализе флавоноидов. Флавоноиды представляют собой группу природных соединений, обладающих выраженными биологическими свойствами и широким спектром применения, от фармацевтики до пищевой промышленности. Однако, для полноценного их исследования и выделения требуется точный и эффективный метод хроматографического разделения.

В настоящее время высокоэффективная жидкость хроматография — один из наиболее перспективных методов используется для анализа биологически активных вещества, в частности изохинолины, а также выявить взаимосвязь «структура-свойство-активность».

Многие гетероциклические соединения, широко используются в биохимии и медицине в качестве антиоксиданты, ингибиторы, они входят в состав ряда натуральные вещества и лекарства, обладающие антигипертензивное, антибактериальное, противовирусное, противоопухолевое и другие виды фармакологического действия [1].

В настоящее время высокоэффективная жидкостная хроматография (ВЭЖХ) представляет собой метод, обладающий большим потенциалом для надежного изучения закономерностей удержания сложных соединений, которые трудно испаряются и чувствительны к теплу. Этот метод особенно ценен при исследовании биологических объектов, содержащих биологически активные вещества. Среди них флавоноиды, такие как дигидрокверцетин (ДКВ) и дигидрокемпферол (ДКФ), обнаруживают широкий спектр биологической активности, включая антиоксидантные, противоопухолевые, противоаллергические, противовоспалительные, капилляроукрепляющие, гепатопротекторные [7-11] и другие свойства. Оценка содержания флавоноидов в экстрактах лекарственных растений становится ценным источником информации о перспективах использования растительного сырья в фармацевтике.

Определению флавоноидов с использованием высокоэффективной жидкостной хроматографии (ВЭЖХ) в научной литературе посвящено огромное количество опубликованных работ. Однако в подавляющем большинстве из них приводятся результаты применения ВЭЖХ при определении состава флавоноидных комплексов природных объектов. И, несмотря на серьезные усилия в определении взаимосвязи между структурой и удерживанием веществ в хроматографии [5], значительных успехов применительно к удерживанию флавоноидов нами в научной литературе не

обнаружено. Проблема, по нашему мнению, связана с тем, что попытки связать удерживание сорбатов в случайно выбранной хроматографической системе (т.е. с некоторым типом стационарной фазы и при некотором составе подвижной фазы) с каким бы то ни было параметром сорбата бесперспективны. Применение метода относительного анализа удерживания [3, 4] показывает, что линии трендов для различных веществ на карте разделения определяются двумя ортогональными факторами: положением точки конвергенции (являющейся функцией строения вещества) и наклоном линии тренда (также являющимся функцией строения вещества).

В теории жидкостной хроматографии к настоящему времени известно значительное число моделей удерживания, связывающих параметры хроматографической системы с различными электронными и физико-химическими характериститками сорбатов, такими, как поляризуемость, ван-дер-ваальсов объем или площадь поверхности молекул, фактор гидрофобности, индексы молекулярной связанности, молекулярная масса или температура кипения, и др. [2, 6]. Однако, в такой сложной многокомпонентной системе, которую представляет собой хроматографическая колонка, заполненная сорбентом, и через которую движется поток элюента с растворенным в нем сорбатом (или смесью сорбатов) учесть все многообразие взаимодействий в условиях жидкостной хроматографии оказывается достаточно сложно.

Целью нашей работы явилось изучение влияния состава элюента на хроматографическое удерживание некоторых флавоноидов, оптимизации условий анализа рутина и кверцетина с применением ВЭЖХ, а также в количественной оценке их содержания в экстрактах лекарственных растений.

Объектами исследования были выбраны рутин и кверцетин.

Закономерности удерживания флавоноидов, в частности, рутина и кверцитина исследовали в условиях ВЭЖХ.

Эксперимент был выполнен на жидкостном хроматографе "Agilent 1200 Series Rapid Resolution LC System"с УФ детектором. Детектирование проводили при длине волны 254 нм. Сорбентом служил Exlipse XDB C-18, размер частиц 5 мкм. Размеры хроматографической колонки 4.0х250 мм. Объем подвижной фазы в колонке принимали равным объему удерживания нитрита натрия. В качестве элюентов применяли смесь ацетонитрил – вода с содержанием ацетонитрила от 15 до 40% (по объему). Для приготовления подвижной фазы использовали дистилированную воду и ацетонитрил. Элюирование проводили в изократическом режиме; объемный расход элюента составлял 400 мкл/мин. Растворы сорбатов (концентрации 10-4 моль/л) готовили растворением индивидуальных образцов в соответствующей подвижной фазе; пробу вводили в количестве 20 мкл. Для изучения влияния природы подвижной фазы на хроматографическое удерживание в качестве элюента применяли смесь ацетонитрила с водой в разных объемных соотношениях (60:40, 70:30, 75:25, 80:20, 85:15).

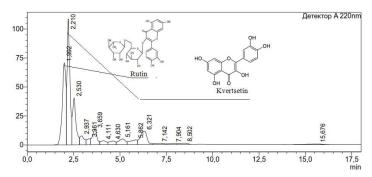


Рисунок 1. Хроматограмма смеси флавоноидов (состав элюента: СН₃СN/фосфатный буфер = 30:70)

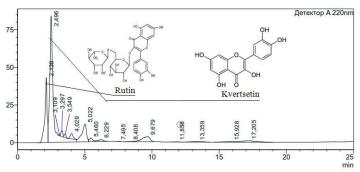


Рисунок 2. Хроматограмма смеси флавоноидов (состав элюента: СН₃СN/фосфатный буфер = 20:80)

Наилучшей селективностью к исследуемым соединениям обладает система с объемным содержанием органического модификатора (СН₃ОН) в элюенте равным 30 %. Экспериментальные данные показали, что при содержании в элюенте 40% метанол сорбаты быстрее элюируются из колонки, что сопровождается пониженной селективностью такой хроматографической системы к рассматриваемым соединениям.

Увеличение концентрации фосфатного буфера с 70 до 80% приводит к возрастанию характеристик удерживания и высокой селективностью такой системы к изучаемым соединниям.

При этом были определены оптимальные условия разделения смеси экстрактов флавоноидов: элюент - ацетонитрил:фосфатный буфер = 20:80, скорость подвижной фазы - 1 мл/мин. Детектор УФ, длина волны 220 нм. Хроматограмма смеси, полученной в этих условиях, представлена на рисунках 1 и 2.

На основании полученных результатов можно отметить, что найденные оптимальные условия обеспечивают высокую эффективность (N = 3287; BЭТТ = 0.03 мм), селективность ($\alpha = 1.28$) и полное разделение (Rs = 2.75). Время разделения 18-25 минут.

Нами было выявлено, что при постоянной концентрации ацетонитрила в элюенте удерживание сильно зависит от природы заместителей и от их взаимного расположения.

Обсуждение результатов. Особенности хроматографического поведения флавоноидов гидроксильная и карбонильная группы считаются полярными группами, рост их числа в молекуле должен приводить к росту гидрофильности сорбатов. Но для удерживания флавоноидов в ОФ ВЭЖХ все не так просто. Например, в работе [4], в которой сопоставлено удерживание 34 флавоноидов на стационарной фазе μВопфарак С18 в подвижных фазах на основе смесей метанола с водой, подкисленных уксусной кислотой, удерживание 3,3',4',7-тетрагидроксофлаванона (фустина) оказалось меньше удерживания дигидроквецетина (ДГК), отличающего от фустина дополнительной ОН-группой. При этом удаление из ДГК карбонильной группы сказывается в резком уменьшении удерживания получающихся при этом диастереомерных катехинов. В принципе, объяснить такой эффект можно, если предположить относительную лиофильность связанных водородной связью карбоксильной и гидроксильно

Свойства флавоноидов могут изменяться неодинаково при введении одних и тех же функциональных групп в различные положения каркаса молекулы. Наконец, точечный анализ удерживания любых соединений ненадежен, поскольку часто при смене состава подвижной фазы изменяется порядок элюирования аналитов.

Из изученных соединений менее всего удерживается рутин: при увеличении содержания ацетонитрила в подвижной фазе до 30 об.% время выхода этого соединения совпадает с «мертвым» временем. Установлено, что удерживание соединений возрастает по мере уменьшения содержания ацетонитрила в подвижной фазе. Так, например, рутин практически не удерживается на колонке при содержании ацетонитрила в подвижной фазе более 30%, а время выхода рутина увеличивается от 1,5 до 2,5 мин при уменьшении содержания ацетонитрила от 50 до 25%. На основании анализа данных по влиянию состава подвижной фазы на удерживание некоторых флавоноидов сделан вывод (табл. 1), что в исследуемой хроматографической системе за приемлемое время анализа (менее 20 мин) возможно разделение следующих смесей флавоноидов: 1) при соотношении в подвижной фазе ацетонитрила и 0,1%-го водного раствора Н₃РО₄ 20:80, рН=4,5: рутин, кверцетин, (время анализа 20 мин); 2) при соотношении в подвижной фазе ацетонитрила и 0,1%-го водного раствора Н₃РО₄ 30:70, рН 4,5: рутин, кверцетин (время анализа 10 мин.

Таблица 1. Время и факторы улерживания исследованных флавоноидов в различных составах подвижной фазы.

время и	і факторы удерживания исследован	ных флавоноидов .	в различных состава	ах подвижной фазы
Вещество	Подвижная фаза (CH ₃ CN/Фосфатный буфер)			
	20/80		30/70	
	t _R , сек	k	t _R , сек	k
Кверцетин	149,76	0,103	132,6	0,138
Рутин	128,34	0,087	119,52	0,112

Из анализа как видно из таблицы 1, наилучшей селективностью по отношению к изучаемым соединениям обладает система с объемом органического модификатора (CH₃CN) в элюенте, равным 20%.

Экспериментально показано, что если в элюенте содержится 20 % ацетонитрила, то сорбаты элюируются из колонки медленнее, что приводит к увеличению селективности такой хроматографической системы по отношению к рассматриваемым соединениям. Уменьшение концентрации фосфатного буфера с 80 до 70% приводит к снижению удерживаемости, высокой селективности изучаемых соединений и их разделения, что хорошо видно по данным хроматограммы, полученным в таблице 1.

Количество ацетонитрила в элюенте и функциональные группы в веществах, а также их взаимное расположение сильно зависят от характера удерживания исследуемых веществ.

Таким образом, ВЭЖХ представляет собой эффективный метод для хроматографического разделения и анализа флавоноидов. Его преимущества в высокой чувствительности, скорости анализа и точности делают его важным инструментом в исследованиях флавоноидов. Дальнейшие исследования в этой области позволят расширить наше понимание структуры и биологической активности различных флавоноидов, что в свою очередь может привести к разработке новых применений в медицине и пищевой промышленности. Исследование влияние структуры сорбатов на хроматографическое удерживание и сорбции некоторых флавоноидов как рутин и кверцитин методом ВЭЖХ на неполярном сорбенте показало, что наиболее выраженное разделение смеси производных азотсодержащих гетероциклов протекает при соотношении компонентов бинарной подвижной фазы ацетонитрил/вода (30/70 % об.).

Выводы.

- 1. Разработан быстрый и весьма воспроизводимый метод определения рутина и кверцетина в метанолных экстрактах лекарственных растений. Этот метод может быть применен для стандартизации препаратов на основе указанных данных о флавоноидах.
- 2. Исследование сорбции некоторых флавоноидов методом высокоэффективной жидкостной хроматографии на неполярном сорбенте показало, что наиболее избирательно этот процесс протекает при соотношении компонентов бинарной подвижной фазы ацетонитрил/фосфатный буфер (30/70 % об.) в изократическом режиме.
- 3. Исследовано хроматографическое поведение некоторых производных рутина и кверцетина в условиях ВЭЖХ при использовании в качестве элюента смеси вода фосфатный буфер в различных объемных соотношениях. Изучено влияние условий хроматографирования и структуры сорбатов на хроматографическое удерживание этих соединений.
- 4. Методом ВЭЖХ установлено присутствие основных некоторых флавоноидных веществ в метанолной фракции Sophóra pachycárpa растительного средства. Установлено количественное содержание в Sophóra pachycárpa рутина, кверцетина.

ЛИТЕРАТУРА

- 1. Kh R. I., Bebitova K. E., Kilicheva D. M. INFLUENCE OF CHROMATOGRAPHY CONDITIONS ON THE RETENTION OF SOME ISOQUINOLINE AND PYRIMIDINONE DERIVATIVES //World Bulletin of Management and Law. 2023. T. 21. C. 91-93.
- 2. Рузиев И. X., Тошматова Р. В. Особенности удерживания некоторых азотсодержащих гетероциклических соединений //Kimyo va tibbiyot: nazariyadan amaliyotgacha. 2022. С. 227-229.
- 3. Héberger K. // J. Chromatogr. A. 2007. Vol. 1158, pp. 273-305.

- 4. Дейнека В.И. // Ж. физ. химии. 2006. Т. 80. № 3. С. 511-516.
- Karpov S.I., Matveeva M.V., Selemenev V.F. // Russian Journal of physical Chemisnry A. 2001. Vol. 75. No 2. pp. 266-271
- 6. Рузиев И. Х., Журакулов Ш. Н. Физико-химические закономерности хроматографического удерживания некоторых производных ряда изохинолина //Научный вестник. СамГУ. 2019. №. 5. С. 117.
- 7. Колхир В.К., Тюкавкина Н.А., Быков В.А. и др.//Хим.фарм.журнал. 1995. N С.61-64.
- 8. Тарасова Е.А.//Практическая фитотерапия. 1999. №1. С. 37-41.
- 9. Тюкавкина Н.А., Руленко И.А., Колесник Ю.А.//Вопросы питания. 1997. №6. С. 12-15.
- 10. Bronner C., Landry Y.//Agents Actions. 1985. Vol. 16(3-4), P. 147-151.
- 11. Chu S.C., Hsieh Y.S., Lin J.Y.//J.Nat.Prod. 1992. Vol. 55(2), P. 179-183.