ИЗУЧЕНИЕ АДСОРБЦИИ ИОНОВ ЛИТИЯ НА LiAlxMn(2-x)O4 (0 ≤ x ≤ 0.8) АДСОРБЕНТОВ, ПОЛУЧЕННЫХ ЗОЛЬ-ГЕЛЬ МЕТОДОМ
Ключевые слова:
LiMn2O4, шпинель, адсорбент, модификация, адсорбция Li .
Аннотация
В данной работе была синтезирована модифицированная LiAlxMn(2-x)O4 шпинель, с частичным замещением марганца в оксидной фазе со структурой шпинели LiMn2O4 на Al3+, золь-гель методом. Изучены характеристики LiAlxMn(2-x)O4 (0≤x≤0.8) методами рентгеновской дифракции (РФА) и сканирующей электронной микроскопии (СЭМ). Изучена зависимость адсорбции ионов лития от влияния рН, дозы адсорбента, времени и концентрации Li+.
Литература
1. V.D. Dang, M. Steinberg, Preliminary design and analysis of recovery of lithium from brine with the use of a selective yextractant, Yenergy 3 (1978) 325–336.
2. H. Saravaia, H. Gupta and V. Kulshrestha, Single step synthesis of a magnesium doped lithium manganese oxide ion sieve nanomaterial and a SPES/ion sieve composite membrane for the separation of lithium, RSC Adv., 2016, 6, 106980–106989.
3. F. Qian, B. Zhao, M. Guo, Z. Qian, Z. Wu and Z. Liu, Trace doping by fluoride and sulfur to enhance adsorption capacity of manganese oxides for lithium recovery, Mater. Design, 2020, 194, 108867–108878.
4. Fangren Qian, Bing Zhao, Min Guo et al. / Enhancing the Li+ adsorption and anti-dissolution properties of Li1.6Mn1.6O4 with Fe, Co doped // Hydrometallurgy 193 (2020) 105291.
5. F. Qian, M. Guo, Z. Qian, B. Zhao, J. Li, Z. Wu and Z. Liu, Enabling highly structure stability and adsorption performances of Li1.6Mn1.6O4 by Al-gradient surface doping, Sep. Purif. Technol., 2021, 264, 118433–118442.
6. F. Qian, B. Zhao, M. Guo, Z. Qian, N. Xu, Z. Wu and Z. Liu, Enhancing the Li+ adsorption and anti-dissolution properties of Li1.6Mn1.6O4 with Fe, Co doped, Hydrometallurgy, 2020, 193, 105291–105300.
7. X.J. Yang, H. Kanoh, W.P. Tang, K. Ooi, Synthesis of Li1.33Mn1.67O4 spinels with different morphologies and their ion adsorptivities after delithiation, J. Mater. Chem. 10 (2000) 1903–1909.
8. R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, A new type of manganese oxide MnO2•0.5H2O derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties, Chem. Mater. 12 (2000) 3151–3157.
9. D.W. Kim, Separation of lithium and magnesium isotopes by hydrous man-ganese(IV) oxide, J. Radioanal. Nucl. Chem. 252 (2002) 559–563.
10. H. Koyanaka, O. Matsubaya, Y. Koyanaka, N. Hatta, Quantitative correlation between Li absorption and H content in manganese oxide spinel ʎ-MnO2,J. Electroanal. Chem. 559 (2003) 77–81.
11. K.S. Chung, J.C. Lee, E.J. Kim, K.C. Lee, Y.S. Kim, K. Ooi, Recovery of lithium from seawater using nano-manganese oxide adsorbents prepared by gel process, Mater. Sci. Forum 449–452 (2004) 277–280.
12. L. Wang, W. Ma, R. Liu, H.Y. Li, C.G. Meng, Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor, Solid State Ionics 177 (2006) 1421–1428.
13. E.I. Basaldella, P.G. Vazquez, F. Iucolano, D. Caputo, Chromium removal from waster using LTA zeolites: effect of pH, J. Colloid Interface Sci. 313 (2007) 574–578.
14. S. Schiewer, B. Volesky, Modeling of the proton–metal ion exchange in biosorp-tion, Environ. Sci. Technol. 29 (1995) 3049–3058.
15. D.M. Zhou, Y.J. Wang, L. Cang, X.Z. Hao, X.S. Luo, Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics, Chemo-sphere 57 (2004) 1237–1244.
16. M.A. Anderson, A.J. Rubin, Adsorption of Inorganics at Solid–Liquid Interfaces, Ann Arbor Sci., Michigan, 1981.
17. Hye-Jin Hong, Taegong Ryu, In-Su Park et al. / Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater // Chemical Engineering Journal 337 (2018) 455–461.
2. H. Saravaia, H. Gupta and V. Kulshrestha, Single step synthesis of a magnesium doped lithium manganese oxide ion sieve nanomaterial and a SPES/ion sieve composite membrane for the separation of lithium, RSC Adv., 2016, 6, 106980–106989.
3. F. Qian, B. Zhao, M. Guo, Z. Qian, Z. Wu and Z. Liu, Trace doping by fluoride and sulfur to enhance adsorption capacity of manganese oxides for lithium recovery, Mater. Design, 2020, 194, 108867–108878.
4. Fangren Qian, Bing Zhao, Min Guo et al. / Enhancing the Li+ adsorption and anti-dissolution properties of Li1.6Mn1.6O4 with Fe, Co doped // Hydrometallurgy 193 (2020) 105291.
5. F. Qian, M. Guo, Z. Qian, B. Zhao, J. Li, Z. Wu and Z. Liu, Enabling highly structure stability and adsorption performances of Li1.6Mn1.6O4 by Al-gradient surface doping, Sep. Purif. Technol., 2021, 264, 118433–118442.
6. F. Qian, B. Zhao, M. Guo, Z. Qian, N. Xu, Z. Wu and Z. Liu, Enhancing the Li+ adsorption and anti-dissolution properties of Li1.6Mn1.6O4 with Fe, Co doped, Hydrometallurgy, 2020, 193, 105291–105300.
7. X.J. Yang, H. Kanoh, W.P. Tang, K. Ooi, Synthesis of Li1.33Mn1.67O4 spinels with different morphologies and their ion adsorptivities after delithiation, J. Mater. Chem. 10 (2000) 1903–1909.
8. R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, A new type of manganese oxide MnO2•0.5H2O derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties, Chem. Mater. 12 (2000) 3151–3157.
9. D.W. Kim, Separation of lithium and magnesium isotopes by hydrous man-ganese(IV) oxide, J. Radioanal. Nucl. Chem. 252 (2002) 559–563.
10. H. Koyanaka, O. Matsubaya, Y. Koyanaka, N. Hatta, Quantitative correlation between Li absorption and H content in manganese oxide spinel ʎ-MnO2,J. Electroanal. Chem. 559 (2003) 77–81.
11. K.S. Chung, J.C. Lee, E.J. Kim, K.C. Lee, Y.S. Kim, K. Ooi, Recovery of lithium from seawater using nano-manganese oxide adsorbents prepared by gel process, Mater. Sci. Forum 449–452 (2004) 277–280.
12. L. Wang, W. Ma, R. Liu, H.Y. Li, C.G. Meng, Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor, Solid State Ionics 177 (2006) 1421–1428.
13. E.I. Basaldella, P.G. Vazquez, F. Iucolano, D. Caputo, Chromium removal from waster using LTA zeolites: effect of pH, J. Colloid Interface Sci. 313 (2007) 574–578.
14. S. Schiewer, B. Volesky, Modeling of the proton–metal ion exchange in biosorp-tion, Environ. Sci. Technol. 29 (1995) 3049–3058.
15. D.M. Zhou, Y.J. Wang, L. Cang, X.Z. Hao, X.S. Luo, Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics, Chemo-sphere 57 (2004) 1237–1244.
16. M.A. Anderson, A.J. Rubin, Adsorption of Inorganics at Solid–Liquid Interfaces, Ann Arbor Sci., Michigan, 1981.
17. Hye-Jin Hong, Taegong Ryu, In-Su Park et al. / Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater // Chemical Engineering Journal 337 (2018) 455–461.
Опубликован
2024-03-30
Как цитировать
Shahnoza BEGIMQULOVA, Maxzuna RO‘ZIQULOVA, Sherzodbek MIRZAEV, & Abdullo NASIMOV,. (2024). ИЗУЧЕНИЕ АДСОРБЦИИ ИОНОВ ЛИТИЯ НА LiAlxMn(2-x)O4 (0 ≤ x ≤ 0.8) АДСОРБЕНТОВ, ПОЛУЧЕННЫХ ЗОЛЬ-ГЕЛЬ МЕТОДОМ. Вестник УзМУ, 3(3.1), 353-357. https://doi.org/10.69617/uzmu.v3i3.1.1845
Раздел
Статьи