D18 VA D18-C6CH DONOR POLIMERLARNING OPTIK VA FOTOVOLTAIK XUSUSIYATLARI

  • Aziz SAPARBAYEV O‘z RFA U.Arifov nomidagi Ion-plazma va lazer texnologiyalari instituti. Kondensirlangan muitlar optikasi laboratoriyasi, katta ilmiy xodimi ф.-м.ф. (Ph.D.),
  • Abror TURG’UNBOEV O‘z RFA U.Arifov nomidagi Ion-plazma va lazer texnologiyalari instituti. Kondensirlangan muhitlar optikasi laboratoriyasi kichik ilmiy xodimi
  • Farid RO’ZIYEV O‘z RFA U.Arifov nomidagi Ion-plazma va lazer texnologiyalari instituti. Kondensirlangan muhitlar optikasi laboratoriyasi kichik ilmiy xodimi
  • Muhibjon IMOMOV Namangan davlat pedogogika instituti katta o’qituvchisi
  • Sanobar REYMBAYEVA O’zbekiston Milliy Universiteti o’qituvchisi
  • Hamida IBRAGIMOVA O’zbekiston Milliy Universiteti magistranti
##plugins.pubIds.doi.readerDisplayName##: https://doi.org/10.69617/uzmu.v3i3.1.1943
"Kalit so‘zlar" : : D18:L8-Bo, D18-C6Ch:L8-Bo, organik quyosh elementi, fulleren bo’lmagan, yutilish, fotolyuminessensiya, “spin coating”

"Maqola"

Organik quyosh elementlari (OQE) muqobil energiya turlaridan biri bo‘lib, global energetika inqirozini bartaraf etish uchun ushbu sohada jadal tadqiqotlar o’tkazilmoqda. OQElar arzonligi, moslashuvchanligi, yengilligi va eritmani qayta ishlash imkoni mavjudligi bilan Si-asosidagi noorganik quyosh elementlaridan afzalroq deb qaralmoqda. Xususan fulleren bo’lmagan polimer asosli OQElar o’zining barqarorligi hamda samarali energiya o’zgartirish samaradorligi (EO’S) bilan yaxshi natijalar ko’rsatmoqda. Ushbu maqolada fulleren bo’lmagan D18:L8-Bo va D18-C6Ch:L8-Bo asosli OQElarining optik va fotovoltaik parametrlari tadqiq qilindi.

References

1. Kim S., Van Quy H., Bark C. W. Photovoltaic technologies for flexible solar cells: beyond silicon //Materials Today Energy. – 2021. – Т. 19. – С. 100583.
2. Cheng P. et al. Next-generation organic photovoltaics based on non-fullerene acceptors //Nature Photonics. – 2018. – Т. 12. – №. 3. – С. 131-142.
3. Dresselhaus M. S., Dresselhaus G., Eklund P. C. Fullerenes //Journal of materials research. – 1993. – Т. 8. – №. 8. – С. 2054-2097.
4. Li D. et al. Fibrillization of Non‐Fullerene Acceptors Enables 19% Efficiency Pseudo‐Bulk Heterojunction Organic Solar Cells //Advanced Materials. – 2023. – Т. 35. – №. 6. – С. 2208211.
5. Yan C. et al. Non-fullerene acceptors for organic solar cells //Nature Reviews Materials. – 2018. – Т. 3. – №. 3. – С. 1-19.
6. Acquah, Steve FA, et al. “The beautiful molecule: 30 years of C60 and its derivatives.”ECS Journal of Solid State Science and Technology 6.6 (2017): M3155.
7. Hou J. et al. Organic solar cells based on non-fullerene acceptors //Nature materials. – 2018. – Т. 17. – №. 2. – С. 119-128.
8. Liu, Qishi, et al. “18% Efficiency organic solar cells.” Science Bulletin 65.4 (2020): 272-275.
9. Li Z. et al. Over 17% efficiency all-small-molecule organic solar cells based on an organic molecular donor employing a 2D side chain symmetry breaking strategy //Energy & Environmental Science. – 2022. – Т. 15. – №. 10. – С. 4338-4348.
10. Li Y. et al. A facile strategy for third-component selection in non-fullerene acceptor-based ternary organic solar cells //Energy & Environmental Science. – 2021. – Т. 14. – №. 9. – С. 5009-5016.
11. Fei Guo, Chuan, et al. “Metallic nanostructures for light trapping in energy- harvesting devices.” Light: Science & Applications 3.4 (2014): e161-e161.
12. Zhao, Fuwen, Chunru Wang, and Xiaowei Zhan. “Morphology control in organic solar cells.” Advanced Energy Materials 8.28 (2018): 1703147.
13. Cheng P. et al. Comparison of additive amount used in spin-coated and roll-coated organic solar cells //Journal of Materials Chemistry A. – 2014. – Т. 2. – №. 45. – С. 19542-19549.
Nashr qilingan
2024-03-29